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Abstract. After reviewing the basic steps underlying any measurement process in general
relativity we discuss certain freedom allowed by the theory, namely the choice of observers
and that of special frames adapted to the observer world lines. The arbitrariness in the
choice of spatial frames is often removed by selecting those frames which may have an
operational definition. In this context, a special role is played by Fermi-Walker transported
frames which have their physical realization in a set of three mutually orthogonal gyro-
scopes. Along a geodesic orbit the Fermi-Walker transport law reduces to parallel transport.
We give here the necessary prescriptions to explicitly construct a triad of gyro-fixed axes
along an accelerated world of a 1PN approximated metric.

1. Introduction

In general relativity any measurement process
should be considered carefully, for a number
of reasons. The increased dimensions and the
nonvanishing curvature of the spacetime, in
fact, complicate matters and drastically change
the situation in comparison with the Newtonian
case as well as the special relativistic one.
However, if the physical laws have their natu-
ral 4-dimensional formulation, i.e. they are “at
home” in the spacetime, any specific measure-
ment —performed by an arbitrary observer—
deals with events happening in a certain space
point and having a certain duration in time.
That is, the unifying aspect of the spacetime
is lost when operating with an observer, what-
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ever he/she is and whatever his/her kinematical
conditions are.

Actually, one may establish few basic steps
underlying the measurement process (de Felice
& Bini D 2010):

1. Specify the phenomenon under investiga-
tion.

2. Model that phenomenon, i.e., identify the
covariant equations which give a fully sat-
isfactory description of it.

3. Select the observer (or the observer family)
who makes the measurements.

4. Chose an observer-adapted-frame, i.e.,
start the spacetime splitting into the ob-
server’s space and time.

5. Understand the locality properties of the
measurement under consideration, i.e., un-
derstand if the measurement is local or
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non-local with respect to the background
curvature.

6. Identify the frame components of those
quantities which are the observational tar-
gets.

7. Find a physical interpretation of the above
components following a suitable criterion
such as, for example, comparing with what
is known in special relativity or in non-
relativistic theories.

8. Verify the degree of the residual ambiguity
in the interpretation of the measurements
and decide, eventually, the strategy to elim-
inate it.

Evidently each step of the above procedure re-
lies on the previous one, and hardly one may
think to eliminate some of them. Furthermore,
let us recall that fixing the observer is indepen-
dent of the coordinate choice which has been
used to represent the spacetime metric: it is
possible either to have many observers within a
given choice of the coordinate grid or deal with
the same (given) observer within many coordi-
nate systems. Whatever is the choice of the co-
ordinate system, one may adapt to a given ob-
server many spatial frames, each providing a
different perspective. A measurement requires
a mathematical modeling of the target but also
of the measuring conditions which account for
the kinematical state of the observer and the
level of accuracy of his measuring devises. The
physical interpretation of a measurement, in
turn, requires some previous knowledge about
the same object of investigation (see (de Felice
& Bini D 2010) for a detailed discussion).

To make a long story short, when dealing
with any measurement problem in general rel-
ativity one needs first to clarify what is going
to be measured (i.e., the observable) and then
who is going to perform the requested mea-
surement (i.e., the observers). General relativ-
ity leaves as free the choice of the observers,
differently from special relativity where iner-
tial observers play a special role. Furthermore,
once observables and observers have been in-
dicated, the assessment of the measurement
apparatus can still be defined with the con-
sequent choice of the most suited reference

frame, namely the reference axes adapted to
the observer world line.

If the gravitational context of the prob-
lem is already specified, a “suggestion” for the
frame choice may come from the background
geometry itself. Otherwise, along the observer
world lines there exist certain intrinsic choices
of frames. In the former case, for instance one
can align axes according with the spacetime
symmetries, like Killing directions; in the lat-
ter case, instead, one may take advantage of
either Frenet-Serret formalism (or variation of
this; see Bini, de Felice, & Jantzen (1999) for
the definition of relative Frenet-Serret frames)
or geometric transport laws along the observer
world lines, like Fermi-Walker or Lie trans-
port. Fermi-Walker dragged axes are of special
importance because they have their physical re-
alization in a set of mutually orthogonal gyro-
scopes, easy to construct also from a technical
and mechanical point of view. When the con-
sidered orbit reduces to a geodesic the Fermi-
Walker transport law coincides with parallel
(or Levi-Civita) transport law.

In general, if the spacetime is arbitrary
enough (i.e., without special symmetries) and
the world line along which either the Fermi-
Walker or parallel transport law is consid-
ered is an arbitrary world line (or geodesic),
the problem of explicitly determining such an
adapted frame is hopeless. Generic spacetime
metric at 1PN order, which we are going to
discuss in the present paper, allow instead for
closed form expressions. To the best of our
knowledge, a general discussion in this sense
is original and may have also a number of ap-
plications, either in a pure theoretical context
or in the framework of high precision astrome-
try, GPSs and navigation in space.

2. Spacetime metric at 1PN order

The standard form (Misner, Thorne, &
Wheeler 1973) of a 1PN metric is the follow-
ing

ds2 = g00(dx0)2 + 2g0idx0dxi + gi jdxidx j , (1)

where the coordinates x0 = ct = ε−1t, xa (a =
1, 2, 3) all have the dimensions of a length and

g00 = −1 + 2ε2V − 2ε4V2 + O(6) ,
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g0i = −4ε3Vi + O(5) ,

gi j = δi j

(
1 + 2ε2V

)
+ O(4) , (2)

with ε = 1/c. The functions V and Vi denote
the potentials associated with the gravitational
field. For instance, for the spacetime of a single
body with massM in harmonic coordinates we
have

V =
GM

r
+ ε2GM

(
− (n · v)2

2r
+ 2

v2

r

)
,

Vi =
GMvi

r
, (3)

whereas for a system of two bodies with
masses m1 and m2 the potentials are (Blanchet,
Faye, & Ponsot 1998)

V =
Gm1

r1
+ ε2Gm1

− (n1 · v1)2

2r1
+ 2

v2
1

r1

+Gm2

− r1

4r3
12

− 5
4r1r12

+
r2

2

4r1r3
12




+1↔ 2 ,

Vi =
Gm1vi

1

r1
+ 1↔ 2 , (4)

and the notation na = ra/ra, where

ra = ra(t, x, y, z) =
[
(x − xa(t))2 + (y − ya(t))2

+(z − za(t))2
]1/2

, (5)

and

rab(t) =
[
(xa(t) − xb(t))2 + (ya(t) − yb(t))2

+(za(t) − zb(t))2
]1/2

, (6)

has been used, with a, b = 1, 2; in the case of
the spacetime of a single body (3) r1 has been
simply denoted by r and m1 byM.

2.1. Fiducial observers and adapted
frame

It is convenient to adopt the so-called “thread-
ing” point of view (Jantzen, Carini, & Bini
1992), i.e. to select as fiducial observers the
static observers with associated 4-velocity m =

(1/M)∂0, i.e. those whose world lines corre-
spond to constant values of the spatial coor-
dinates xa = const. The spacetime metric can
thus be re-written as

g = −M2(dx0 − Madxa)2 + γabdxadxb , (7)

with inverse

g−1 = −M−2∂0 ⊗ ∂0 + γabεa ⊗ εb , (8)

where we have introduced the lapse-shift nota-
tion

g00 = −M2 , g0a = M2Ma . (9)

The triad

εa = ∂a + Ma∂0 (10)

defines an observer-adapted (non-orthogonal)
spatial frame such that

m · m = −1 , m · εa = 0 ,
εa · εb = γab = gab + M2MaMb . (11)

Projection onto the Local Rest Space of the ob-
servers m is accomplished by means of the op-
erator

P(m) = g + m ⊗ m . (12)

Furthermore, the cross product between spatial
vectors, say X and Y , can be defined there as
follows

[X ×m Y]a = η(m)abcXbYc , (13)

where η(m)abc = ηρabcmρ.
Together with the (natural) non-orthogonal

triad εa one may form an orthonormal triad
adapted to m, i.e.,

e(m)1̂ =
1√
γ11

ε1 ,

e(m)2̂ =

√
γ11

γγ33

(
ε2 − γ12

γ11
ε1

)
,

e(m)3̂ = e(m)1̂ ×m e(m)2̂

=
1√
γγ33

ε1 ×m ε2

=
1√
γ33

[γ31ε1 + γ32ε2 + γ33ε3] , (14)
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where

γγ13 = γ12γ23 − γ13γ22 ,

γγ23 = γ13γ12 − γ11γ23 ,

γγ33 = γ11γ22 − γ2
12 , (15)

and

γ = det [γab]
= γ11γ22γ33 − γ11γ

2
23 − γ22γ

2
13

−γ33γ
2
12 + 2γ12γ13γ23 . (16)

The series expansion of the lapse and shift
functions M and Ma and the spatial metric γab
gives

M = M(0) + ε2M(2) + ε4M(4) + O(6) ,
Ma = ε3M(3)

a + ε5M(5)
a + O(7) ,

γab = γ(0)
ab + ε2γ(2)

ab + O(6) , (17)

with

M(0) = 1 , M(2) = −V , M(4) =
1
2

V2 ,

M(3)
a = −4Va , M(5)

a = −8VVa ,

γ(0)
ab = δab , γ(2)

ab = 2Vδab . (18)

To the 1PN order we then have

m =

(
1 + ε2V + ε4 1

2
V2

)
∂0 ,

εa = ∂a − 4ε3Va∂0 ,

e(m)â = −4ε3Va∂0

+

(
1 − ε2V + ε4 3

2
V2

)
∂a , (19)

also implying

P(m)ab = (1 + 2ε2V)δab (20)

for the projection operator.

3. Test particle motion

Consider the motion of a test particle in
this gravitational background. Let its timelike
world line be given by

U = γ(U,m)[m + εν(U,m)]
= Γ[∂0 + εva∂a] , (21)

where

ν(U,m) = ||ν(U,m)||ν̂(U,m) = ν(U,m)âe(m)â ,

γ(U,m) = (1 − ε2||ν(U,m)||2)−1/2 , (22)

so that U · U = −1 and va depend on t only.
Here we have included two representations of
U, one in terms of the m observers (fundamen-
tal for a 1 + 3 observer adapted analysis of the
motion) and the other in terms of coordinates
(more familiar when using the PN approxima-
tion).

An adapted frame to this world line can be
obtained by boosting the orthonormal thread-
ing frame {m, e(m)â} along U, i.e.,

E0̂ = U , Eâ = B(U,m)e(m)â , (23)

where

Eâ =

[
P(U) − γ(U,m)

γ(U,m) + 1

ε2ν(m,U) ⊗ ν(m,U)
]

e(m)â , (24)

where the symbol denotes right contraction
and

εν(m,U) =
1

γ(U,m)
m − U . (25)

At the 1PN level the particle 4-velocity
(21) has the Γ factor

Γ = Γ(0) + ε2Γ(2) + ε4Γ(4)

= 1 + ε2
(

1
2

v2 + V
)

+ ε4
[
3
8

v4

−4δabVavb +
1
2

V2 +
5
2

v2V
]
, (26)

so that

= Γ[∂0 + εv] (27)

where the notation

v = va∂a , v2 = δabvavb (28)

has been used. In terms of the coordinate com-
ponents of the spatial velocity the frame com-
ponents ν(U,m)â and the associated Lorentz
factor γ(U,m) are

ν(U,m)â = (1 + 2Vε2)va ,

γ(U,m) = 1 +
v2

2
ε2 +

(
2V +

3
8

v2
)

v2ε4 . (29)
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The spatial triad (24) adapted to U is thus
given by

Eâ =

{
εva + ε3

[
va

(
v2

2
+ 3V

)
− 4Va

]}
∂0

+

(
1 − ε2V +

3
2
ε4V2

)
∂a

+va ε
2

2

[
1 + 3ε2

(
v2

4
+ V

)]
v .

(30)

If the particle moves along a timelike
geodesic, its motion is governed by the equa-
tions

aa ≡ dva

dt
= [∇V]a

+ε2 [
4(∂tV)a − 3va∂tV − 4(v × V)a

+(v2 − 4V)(∇V)a − 4va(v · ∇V)
]

+ε4[6va(v2 − 3V)∂tV + 4(V − v2)(∂tV)a

−4va(v · ∂tV)] , (31)

where [∇V]a = δab∂bV .

3.1. Fermi-Walker frame along the
particle’s world line

One may also require that the fiducial triad
adapted to U be Fermi-Walker transported
along U, a fact that might be given an op-
erational definition, since Fermi-Walker trans-
ported axes are obtained by gyroscope-fixed
axes. An orthonormal Fermi-Walker trans-
ported triad Fâ can be constructed after a suit-
able rotation of the orthonormal frame Eâ.
However, even if – in principle – explicit cal-
culations can always be performed, in any spe-
cific fixed background spacetime may arise
computational difficulties; the latter disappear
when dealing with PN approximations.

The spatial triad (30) rotates with a cer-
tain angular velocityω(fw) with respect to gyro-
fixed axes along U, i.e.,

P(U)∇U Eâ ≡ ∇(fw)(U)Eâ = ω(fw) × Eâ , (32)

with

ω(fw) = ε3XaEâ , (33)

where

X =
1
2

(v × a) − 2 curl (V − vV) , (34)

because va only depend on t; here the × and
curl operations are defined as in the case of flat
3-dimensional Euclidean space.

In order to obtain a Fermi-Walker trans-
ported orthonormal frame {U, Fâ} the spa-
tial triad {Eâ} must be conveniently rotated,
namely

Fâ = Rb̂
âEb̂ , (35)

where R is the rotation matrix such that

δâb̂ = Rd̂
âδd̂ĉRĉ

b̂ . (36)

The Fermi-Walker transport condition
P(U)∇U Fâ = 0 then implies along the
particle’s world line (i.e., xα = xα(τ))

∇U(Rb̂
â)Eb̂ + Rb̂

âω
ĉ
(fw) (Eĉ × Eb̂) = 0 , (37)

that is

∇U(Rd̂
â) + Rb̂

âω
ĉ
(fw)εĉb̂

d̂ = 0 . (38)

However, the derivative along the particle’s
world line may be re-expressed in terms of
derivative with respect to the coordinate time
according to the relation

∇U → Γ∂0 = εΓ∂t , (39)

so that Eq. (38) becomes

εΓ∂t(Rd̂
â) = −Rb̂

âε
3Xĉεĉb̂

d̂ , (40)

which should be solved order by order.
Therefore, taking also a series expansion of
Rd̂

â it follows that

Rd̂
â = δd̂

â + ε2[R(2)]d̂
â + ε4[R(4)]d̂

â . (41)

The orthonormality condition (36) at the order
O(4) implies that [R(2)] is antisymmetric and
the symmetric part of [R(4)] satisfying the con-
dition

2[R(4)](âb̂) = [R(2)]2
âb̂ . (42)
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It is easy to check that [R(2)]d̂
â = ε d̂

âĉY ĉ,
namely

[R(2)]d̂
â =


0 Y 3̂ −Y 2̂

−Y 3̂ 0 Y 1̂

Y 2̂ −Y 1̂ 0

 , (43)

where Y ĉ =
∫

Xĉdt. From condition (42) we
have that the symmetric part of [R(4)] is known
in terms of [R(2)]; hence we may write

[R(4)]âb̂ =
1
2

[R(2)]2
âb̂ + [W (4)]âb̂ (44)

with [W (4)]âb̂ antisymmetric. Since the are no
evolution equations at order 4, the matrix W
remains arbitrary at this order and can be set as
identically vanishing. A Fermi-Walker spatial
triad at the order O(4) turns out to be then given
by

Fâ = Eb̂

[
I − ε2[R(2)] +

ε4

2
[R(2)]2

]
b̂

â , (45)

that is

Fâ = Eb̂

[
exp[−ε2[R(2)]

]
b̂

â , (46)

where I is the identity matrix. Note that the
Fermi-Walker frame (45) reduces to that ob-
tained by Fukushima (1988) if truncated to the
third order in the expansion (modulo a misprint
in the frame components of the Fermi-Walker
angular velocity (33)).

4. Conclusions

We have provided the mathematical formal-
ism necessary to explicitly construct a Fermi-
Walker transported frame along an acceler-
ated timelike world line of a generic 1PN ap-
proximated metric. If the considered path is
geodesic, the frame is parallely transported. In
view of the relative easiness in technically re-
alize such a frame with mutually orthogonal
gyroscopes, the result of the present analysis
may play a role both in astrometric contexts
and satellite navigation in space.
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